Jackson Cionek
34 Views

HDBR and ISS: What They Are and Why They Matter in Neuroscience Research

HDBR and ISS: What They Are and Why They Matter in Neuroscience Research

What is HDBR?

HDBR stands for Head-Down Tilt Bed Rest.

It is a ground-based experimental model widely used in space and neuroscience research to simulate some physiological effects of microgravity on the human body.

HDBR and ISS - What They Are and Why They Matter in Neuroscience Research
HDBR and ISS - What They Are and Why They Matter in Neuroscience Research

How HDBR works:

  • Participants remain in bed for days or months with the body tilted about −6°, with the head lower than the feet.

  • This position induces a cephalad fluid shift (blood and cerebrospinal fluid moving toward the head), similar to what happens in space.

What HDBR models well:

  • Fluid redistribution

  • Cardiovascular adaptations

  • Muscle and bone deconditioning

  • Changes in sleep, autonomic balance, and internal bodily state (interoception)

What HDBR does not fully model:

  • Real microgravity

  • Continuous sensorimotor adaptation

  • Dynamic proprioceptive and motor control without body support

In BrainLatam terms, HDBR strongly affects Tekoha (extended interoception and internal regulation), but only weakly challenges APUS (extended proprioception and spatial movement).


What is the ISS?

ISS stands for International Space Station.

It is an orbital laboratory operating in real microgravity, where astronauts live and work for long durations, typically around six months, in low Earth orbit (~400 km).

What characterizes the ISS environment:

  • Continuous microgravity (not zero gravity, but permanent free fall)

  • The body is in a free-floating condition, without stable postural support

  • Strong decoupling of gravitational input from vestibular and proprioceptive systems

  • Constant need for motor planning, stabilization, and spatial orientation

Neurophysiologically, the ISS environment:

  • Forces continuous sensorimotor recalibration

  • Alters vestibular, somatosensory, and visual integration

  • Demands active adaptation of movement, posture, and coordination

In BrainLatam terms, the ISS directly challenges APUS (extended proprioception), while also impacting Tekoha (internal regulation) in a dynamic and task-dependent manner.


Why the distinction matters for neuroscience

HDBR and the ISS are often treated as interchangeable models of microgravity, but they are not equivalent.

  • HDBR primarily simulates a passive internal physiological state, characterized by immobility and reduced sensorimotor demands.

  • ISS microgravity represents an active adaptive state, where the brain must continuously reorganize motor control and proprioceptive mapping in real space.

This distinction helps explain why EEG studies often find:

  • Increased delta/theta activity in HDBR, consistent with reduced sensorimotor engagement and altered internal regulation.

  • Increased beta activity in ISS studies, especially in somatosensory and motor regions, consistent with ongoing proprioceptive and motor adaptation.


BrainLatam synthesis

HDBR models internal shifts.
The ISS reveals embodied adaptation.

Both are valuable, but they answer different neuroscientific questions. Understanding their limits is essential when interpreting brain data related to microgravity, movement, and regulation.

The body does not adapt only by resting.
It adapts by moving, sensing, and reorganizing itself in space.

Re.:

‌Sevilla-García, M., Quivira-Lopesino, A., Cuesta, P., Pusil, S., Bruña, R., Fiedler, P., Maestu, F., Cebolla, A. M., Cheron, G., Brauns, K., Stahn, A. C., & Funke, M. E. (2025). Brain power comparison between microgravity and head-down tilt bed rest: an electroencephalography approach. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-26291-8




Jiwasa – Aprender y Enseñar dentro de un Yo Colectivo

Jiwasa – Learning and Teaching within a Collective Self

Jiwasa – Aprendendo e Ensinando num Eu Coletivo

Un marco optimizado para EEG–fMRI simultáneo a 7T que permite una adquisición segura y de alta calidad del cerebro humano con resolución temporal en milisegundos y resolución espacial submilimétrica

An optimized framework for simultaneous EEG–fMRI at 7T enabling safe, high-quality human brain imaging with millisecond temporal resolution and sub-millimeter spatial resolution

Uma estrutura otimizada para EEG-fMRI simultâneos a 7T, permitindo imagens cerebrais humanas seguras e de alta qualidade com resolução temporal de milissegundos e resolução espacial submilimétrica

IRDA/IRTA en reposo: qué “encienden” y “apagan” los eventos lentos del EEG en el BOLD

IRDA IRTA at rest - what slow EEG events turn on and turn off in BOLD

IRDA IRTA em repouso - o que o EEG lento acende e apaga no BOLD

Respiración derivada del ECG para explicar fluctuaciones BOLD en reposo y modulaciones respiratorias

ECG-derived respiration to explain resting-state BOLD fluctuations and respiratory modulations

Respiração derivada do ECG para explicar flutuações BOLD em repouso e desafios respiratórios

Los ganglios basales como objetivo de neurofeedback motor por fMRI en la enfermedad de Parkinson

Basal Ganglia as an fMRI Motor Neurofeedback Target in Parkinson’s Disease

Gânglios da base como alvo de neurofeedback motor por fMRI no Parkinson

Mecanismos subyacentes de las respuestas de discrepancia visual – Un estudio con EEG–fMRI

Underlying Mechanisms of Visual Mismatch Responses – An EEG–fMRI Study

Mecanismos subjacentes das respostas de incompatibilidade visual – Um estudo com EEG-fMRI

Videojuegos frecuentes y memoria de trabajo: qué cambia en delta, theta y alfa del EEG

Frequent Video Gaming and Working Memory: What Changes in Delta, Theta, and Alpha EEG

Jogos frequentes e memória: o que muda no delta, theta e alfa do EEG

HDBR y la ISS: qué son y por qué importan en la investigación neurocientífica

HDBR and ISS: What They Are and Why They Matter in Neuroscience Research

Microgravidade vs HDBR no EEG

tACS gamma domiciliaria en la enfermedad de Alzheimer

Home-Based Gamma tACS in Alzheimer Disease: the question, the experiment, and why it answers — a commentary on Cantoni, Casula, Tarantino et al. (JAMA Network Open, 2025)

Gamma tACS domiciliar no Alzheimer: a pergunta, o experimento e por que ele responde — comentário sobre Cantoni, Casula, Tarantino et al. (JAMA Network Open, 2025)

Reliable Biomarkers of Descending Pain Inhibition: CPM and LEP-N2P2 in EEG — A Commentary on Wang et al. (European Journal of Pain, 2025)

Reliable Biomarkers of Descending Pain Inhibition: CPM and LEP-N2P2 in EEG — a Commentary on Wang et al. (European Journal of Pain, 2025)

Biomarcadores confiáveis da inibição descendente da dor: CPM + LEP-N2P2 no EEG — comentário sobre Wang et al. (European Journal of Pain, 2025)

Atención, P300 y carga mental en el Flow: análisis del estudio “Shielding the Mind With Flow”

Attention, P300, and Workload in Flow: An Analysis of the Study “Shielding the Mind With Flow”

Atenção, P300 e workload no Flow: análise do estudo “Shielding the Mind With Flow”

 

EEG ERP fMRI NIRS fNIRS Hyperscanning BrainLatam Decolonial Commentary
EEG ERP fMRI NIRS fNIRS Hyperscanning
BrainLatam Decolonial Commentary

#BrainLatam
#Decolonial
#Neuroscience
#BrainResearch
#EEG
#ERP
#fNIRS
#NIRS
#fMRI
#Hyperscanning
#SocialNeuroscience
#DecolonialScience
#DREXcidadão
#PIX
#DREX

#eegmicrostates #neurogliainteractions #eegmicrostates #eegnirsapplications #physiologyandbehavior #neurophilosophy #translationalneuroscience #bienestarwellnessbemestar #neuropolitics #sentienceconsciousness #metacognitionmindsetpremeditation #culturalneuroscience #agingmaturityinnocence #affectivecomputing #languageprocessing #humanking #fruición #wellbeing #neurophilosophy #neurorights #neuropolitics #neuroeconomics #neuromarketing #translationalneuroscience #religare #physiologyandbehavior #skill-implicit-learning #semiotics #encodingofwords #metacognitionmindsetpremeditation #affectivecomputing #meaning #semioticsofaction #mineraçãodedados #soberanianational #mercenáriosdamonetização
Author image

Jackson Cionek

New perspectives in translational control: from neurodegenerative diseases to glioblastoma | Brain States